انواع المثلثات في الهندسة

mainThumb
مجموعة مثلثات

21-06-2025 11:29 PM

السوسنة

أنواع المثلثات من حيث قياس الزوايا الداخلية
أنواع المثلثات حسب الزوايا كالآتي:
المُثلثات الحادة

المثلثات الحادة (بالإنجليزية: Acute triangles) يُمكن تَعريف المثلثات الحادة على أنها المُثلثات التي يقل قياس زواياها الثلاث عن 90 درجة؛ فعلى سبيل المثال: المُثلث الحاد أ ب ج، قِياس الزاوية أ ب ج فيه يساوي 78 درجة، وقياس الزاوية ب ج أ يساوي 34 درجة، وقياس الزاوية ج ب أ يساوي 68 درجة.
المُثلثات مُنفرجة الزاوية
المثلثات منفرجة الزاوية (بالإنجليزية: Obtuse triangles) يُمكن تعريف المُثلثات مُنفرجة الزاوية على أنها مُثلثات يكون فيها قياس زاوية واحدة أكبر من 90 درجة؛ فعلى سبيل المِثال المُثلث أ ب ج، قِياس الزاوية أ ب ج فيه يساوي 40 درجة، وقياس الزاوية ب ج أ يساوي 19 درجة، وقياس الزاوية ج ب أ يساوي 121 درجة.
المُثلثات قائِمة الزاوية
المثلثات قائمة الزاوية (بالإنجليزية: Right triangles) يُمكن تعريف المُثلثات قائمة الزاوية على أنها مُثلثات يكون فيها قياس زاوية واحدة يساوي 90 درجة؛ فعلى سبيل المِثال المُثلث أ ب ج، قِياس الزاوية أ ب ج فيه يساوي 90 درجة، وقياس الزاوية ب ج أ يساوي 17 درجة، وقياس الزاوية ج ب أ يساوي 73 درجة.
أنواع المثلثات من حيث أطوال الأضلاع
مثلث متساوي الأضلاع مثلث متساوي الأضلاع (Equilateral Triangle) هو المثلث الذي يتكون من ثلاثة أضلاع متساوية في الطول، وينتج عن هذا التساوي ثلاث زوايا متساوية في القياس، قياس كل منها 60 درجة.
مثلث متساوي الضلعين، أو متساوي الساقين مثلث متساوي الضلعين (Isosceles Triangle) هو المثلث الذي يتكون من ضلعين متساويين في الطول، وتنتج عن هذا التساوي زاويتان متساويتان في القياس أيضاً، تمثلان الزاويتين المجاورتين للضلعين المتساويين، وهما في الوقت نفسه زاويتا قاعدة المثلث.
مثلث مختلف الأضلاع مثلث مختلف الأضلاع (Scaline Triangle) هو المثلث الذي يحتوي على ثلاثة أضلاع، قياس طول كلٍّ منها مختلف عن الآخر، وبهذا فإن الزوايا أيضاً مختلفة في القياس.
أمثلة على أنواع المثلثات يُمثل الآتي بعض الأمثلة التي توضح ما سبق ذكره:
المثال الأول: إذا كانت النسبة بين الزوايا الثلاث لمثلث ما هي: 1:2:3، فما هو نوع هذا المثلث.
الحل: نفترض أن قياس إحدى الزوايا هو س، وأن قياس الزاويتين المتبقيتين هو: 2س، 3س، ومن خلال معرفة أن مجموع زوايا المثلث= 180درجة، فإن: س+2س+3س=180، ومنه6س=180، وبقسمة الطرفين على 6 ينتج أن: س=30.
حساب قياس الزاويا: الزاوية الأولى=س= 30°.
الزاوية الثانية=2س=2×30= 60°.
الزاوية الثالثة=3س=3×30= 90°.
مما سبق يتبيّن أن هذا المثلث قائم الزاوية؛ لأن قياس إحدى زواياه 90°.
المثال الثاني: إذا كان قياس إحدى الزوايا المتساوية في المثلث متساوي الساقين هو: 50°[٥]، احسب قياس الزاويتين المتبقيتين.
الحل: قياس الزاويتين المتساويتين=50°، وبطرح قياس الزاويتين من مجموع زوايا المثلث، يكون قياس الزاوية الثالثة: 180-(50-50)=80°.
المثال الثالث: إذا كان قياس أضلاع مثلث متساوي الأضلاع: 3س+12، 4س+8، 6س، جد طول كل منها.
الحل: من خلال تعريف المثلث متساوي الأضلاع ينتج أن: 3س+12=6س، ومنه: س=4، وطول كل ضلع من أضلاع المثلث= 6س= 4×6= 24سم.
المثال الرابع: هل المثلث الذي يبلغ طول أضلاعه: 5، 6،8 سم قائم الزاوية.
الحل: يمكن معرفة أن هذا المثلث قائم الزاوية من خلال تطبيق نظرية فيثاغورس عليه؛ والتي تنص على أن:
مربع الضلع الأطول (الوتر)= مجموع مربعي الضلعين الآخرين، ومنه: 8² هل تساوي 5²+4²، بحساب الطرفين ينتج أن: 8²= 64، أما 6²+5² فتساوي 61، وعليه هذا المثلث غير قائم الزاوية، وإنما هو مختلف الأضلاع، ولأن مجموع الضلعين أقل من مربع الوتر، فذلك يدل على أن هذا المثلث منفرج الزاوية.

اقرأ أيضاً:

 



تعليقات القراء

لا يوجد تعليقات


أكتب تعليقا

لا يمكن اضافة تعليق جديد